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ABSTRACT

Survivability is receiving increasing attention as a key property of critical systems. Survivability is the capability of
a system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or accidents. We present a
method for analyzing survivability of distributed network systems and an example of its application. Survivability
requires system capabilities for intrusion resistance, recognition, and recovery. The Survivable Network Analysis
(SNA) method permits assessment of survivability at the architecture level. Steps in the method include system
mission and architecture definition, essential capability definition, compromisable capability definition, and
survivability analysis of architectural softspots that are both essential and compromisable. Intrusion scenarios play a
key role in the analysis. SNA results are summarized in a Survivability Map that links recommended survivability
strategies to the system architecture. The case study summarizes application of the SNA method to a subsystem of a
large-scale, distributed healthcare system.
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1. network system survivability

Survivability Concepts

Modern society increasingly depends on large-scale networked systems to conduct business, government,
and defense. Survivability of these systems is receiving increasing attention, particularly critical
infrastructure protection.1 As part of its Survivable Systems Initiative, the CERT® Coordination Center
(formerly Computer Emergency Response Team) of the Software Engineering Institute at Carnegie Mellon
University is helping to foster a survivability research community5 and developing technologies to analyze
and design survivable network systems.2− 4 Survivability analysis helps identify the essential functions
which must survive attacks and failure, the effects of attacks and failures, the associated risks, and the
architecture changes which could improve system survivability.

We define survivability as a system’s capability to fulfill its mission (in a timely manner) in the presence of
attacks, failures, or accidents. Unlike traditional security measures that require central control and
administration, survivability addresses highly distributed, unbounded network environments with no central
control or unified security policy. The focus of our survivability research is on delivery of essential services
and preservation of essential assets during attack and compromise, and timely recovery of full services and
assets following attack. We define essential services and assets as those system capabilities that are critical
to fulfilling mission objectives. Survivability in the presence of attacks depends on three key system
capabilities: resistance, recognition, and recovery. Resistance is a system’s capability to repel attacks.
Recognition is the capability to detect attacks as they occur and to evaluate the extent of damage and
compromise. Recovery, a hallmark of survivability, is the capability to maintain essential services and
assets during attack, limit the extent of damage, and restore full services following attack. As an emerging
discipline, survivability builds on existing disciplines, including security,6 fault tolerance,7 and reliability,8

and introduces new concepts and principles.

In this article, we focus exclusively on attacks, although our trace-based, compositional Survivable
Network Analysis method applies to analysis of failures and accidents as well. In contrast to runtime
patching in reaction to survivability problems, the SNA method focuses on systematically designing
survivability into systems during development and evolution. A small team of evaluators, typically three or
four people, can apply the method to an existing or proposed system. Evaluators must be knowledgeable in



a number of disciplines, including architecture analysis, intrusion techniques, and survivability strategies.

2. The Survivable Network Analysis method

Figure 1 depicts the SNA method’s four steps. To use the method, a team reviews mission objectives and
requirements for a current or candidate system and elicits the structure and properties of its architecture in
Step 1. In Step 2, the team identifies essential services and assets, based on mission objectives and the
consequences of failure. Usage scenarios characterize essential service and asset uses. These scenarios are
mapped onto the architecture as execution traces to identify the composition of corresponding essential
components, which must be available to deliver essential services and maintain essential assets. In Step 3,
the team selects intrusion scenarios based on the system environment and an assessment of risks and
intruder capabilities. CERT’s extensive knowledge base of intrusion strategies also influences
selections.These scenarios are likewise mapped onto the architecture as execution traces to identify
corresponding compositions of compromisable components, or components that intrusion could penetrate
and damage.

Figure 1. The Survivable Network Analysis Method

The SNA method takes COTS components’ strengths and weaknesses into account, as well as any known
security and reliability flaws. In Step 4, the team identifies the architecture’s softspot components as
components that are both essential and compromisable, based on the results of Steps 2 and 3. The team then
analyzes softspot components and their supporting architectures for the key survivability properties of
resistance, recognition, and recovery. The analysis of the "three Rs" is summarized in a survivability map.
The map is a matrix that enumerates, for every intrusion scenario and its corresponding softspot effects, the
current and recommended architecture strategies for resistance, recognition, and recovery. The survivability
map provides feedback on the original architecture and system requirements and often results in an iterative
process of cost-benefit analysis and survivability improvement. Although we developed the SNA method
for use with large-scale distributed-network systems, it is equally applicable to other architectures,
including host-based and real-time systems. SNA’s scenario-based approach is a generalization of

operation sequence
9
 and usage scenario methods.
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3. Sentinel: the case study subsystem

Mental health treatment management is often a manual process with handwritten forms and informal



communication. As a result, substantial time and effort are consumed to coordinate various treatment
providers, including physicians, social service agencies, and healthcare facilities. CarnegieWorks Inc. is
developing a large-scale, comprehensive management system to automate, systematize, and integrate
multiple aspects of regional mental healthcare. The CWI system, named Vigilant, will ultimately contain
some 22 subsystems that will operate on a distributed client/server network and maintain a large, complex
database of patient and provider records.

A vital part of the Vigilant system is its development and management of treatment plans. A provider
develops a treatment plan for a patient. The provider identifies each patient’s problems together with a set
of goals and actions, including medication and therapy, to achieve those goals. An interdisciplinary and
interorganizational action team composed of providers carries out each treatment plan.

Treatment plan development and management and action team definition and coordination are key
functions of Sentinel (a subsystem of Vigilant), which resides on a node in the network architecture and
communicates with other nodes through network protocols. Sentinel interacts with other subsystems, with
individual providers, and affiliations of providers that deliver healthcare services. Sentinel maintains the
action teams and treatment plans as part of the Vigilant patient database, and it applies regulatory and
business rules for treatment plan development and validation. Because of the critical nature of mental
health treatment, the need to conform to regulatory requirements, and the severe consequences of system
failure, CWI personnel identified survivability of key Sentinel capabilities as an essential requirement.

4. Applying the SNA method to sentinel

We applied the SNA method to the Sentinel subsystem architecture through a structured series of meetings between
our team and Sentinel project personnel (the customer and development teams). We break down specific results
from this case study below in terms of the four SNA steps and their corresponding artifacts.

Step 1: System definition

The following normal usage scenarios, or NUS, elicited from Sentinel requirements documentation characterize the
subsystem’s principal mission objectives. Each scenario includes a statement of the primary Sentinel responsibility
with respect to the scenario:

♦ NUS1—Enter a new treatment plan. A provider assigned to a patient admitted into an affiliation performs
an initial assessment and defines a treatment plan that specifies problems, goals, and actions. Sentinel must
apply business rules to the treatment plan definition and validation.

♦ NUS2—Update a treatment plan. A provider reviews a treatment plan, possibly adding or changing
problems, goals, or actions, and possibly updating the status of these items. Sentinel must apply business rules
to the treatment plan update and validation.

♦ NUS3—View a treatment plan. A provider treating a patient views a treatment plan to learn the status of
problems, goals, and actions. Sentinel must ensure that the displayed plan is current and valid.

♦ NUS4—Create or modify an action team. A provider defines or changes treatment team membership in a
patient’s affiliation. Sentinel must ensure that the treatment team definition is current and correct.

♦ NUS5—Report the current treatment plans in an affiliation. An administrator views the current state of his
or her affiliation’s treatment of a patient or set of patients. Sentinel must ensure that the treatment plan
summaries are current and correct.

♦ NUS6—Change patient medication. A provider changes the medication protocol in a treatment plan for a
patient, possibly in response to unforeseen complications or side effects. Sentinel must ensure that the treatment
plan is current and valid.

Figure 2 shows the original Sentinel architecture obtained from design documentation. The evaluation team used
execution traces of the normal usage scenarios identified in Step 1 to illuminate and understand architectural



properties. The traces revealed component sequencing within the architecture, as well as the referencing and
updating of database artifacts.

Figure 2. Original Sentinel Architecture

As shown in Figure 2, the user interface resides outside of Sentinel to allow a single interface to serve multiple
subsystems and components. The application program interface, or API, provides synchronous remote procedure
call and asynchronous messaging facilities for the user interface and other system components to use. The list
manager maintains lists, including patients, affiliations, providers, and action teams, and the relationships among
them. The reporting engine provides read-only viewing and reporting of Sentinel artifacts, including current
treatment plans and their histories. The treatment plan builder creates treatment plans for patients, including
problems, goals, and actions; the treatment plan validator checks the completeness and consistency of treatment plan
development and modification. The action team builder provides capability to define and modify action team
membership. Business logic contains enterprise-defined business rules, including validation checks for treatment
plan development and logging triggers that manage change control of sensitive data. In the common database,
Sentinel shares access to data with other subsystems and components.

Step 2: Essential capability definition

We based the essential service and asset analysis on the normal usage scenarios identified in Step 1. The analysis
pointed to a single essential service, namely NUS3: the capability to view treatment plans. This service, more than
any other, was deemed most essential to delivery of mental health treatment because providers depend on real-time,
on-demand access to treatment plans in clinical situations, particularly for emergency situations involving
medication or therapy problems.

The other services could be postponed for hours or even days in the event of system intrusion and compromise.

The analysis also identified a single essential asset: the treatment plans. Preservation of treatment plan integrity and



confidentiality was deemed essential to meeting Sentinel mission objectives. The other Sentinel artifacts, such as
action teams, affiliations, and providers, could all be reconstructed or updated hours or days after intrusion with no
irreversible consequences.

The execution trace of the NUS3 scenario revealed that the reporting engine and the database components, as well as
their supporting components and artifacts, are essential to maintaining the capability to perform the scenario. As
essential assets, the integrity and confidentiality of treatment plans depends on database components for security and
validation.

Step 3: Compromisable capability definition

Based on the system environment and assessment of intruder objectives and capabilities, we selected the following
set of five intrusion usage scenarios, or IUS, as representative of the types of possible attacks on Sentinel. We
selected the intrusions based on customer priorities, as well as on our judgment and experience, for their ability to
illuminate the risks and vulnerabilities that the essential services could experience. We judged the scenarios
sufficient to cover the exposures; additional scenarios considered did not add significantly to the findings. The
description for each scenario consists of an IUS number, the type of attack (shown in parentheses), and a brief
explanation:

♦ IUS1 (data integrity and spoofing attack)—An intruder swaps the patient identifications between two
validated treatment plans.

♦ IUS2 (data integrity and insider attack)—An insider uses other legitimate database clients to modify or
view treatment plans controlled by Sentinel.

♦ IUS3 (spoofing attack)—An unauthorized user employs Sentinel to modify or view treatment plans by
spoofing a legitimate user.

♦ IUS4 (data integrity and recovery attack)—An intruder corrupts major portions of the database, leading to a
loss of trust in validated treatment plans.

♦ IUS5 (insider and availability attack)—An intruder destroys or limits access to Sentinel's software so that it
cannot retrieve treatment plans.

The execution traces of the five IUSs revealed various component vulnerabilities. IUS1 compromised the treatment
plan component; no validity checks on the treatment plans were made after their initial entry. IUS2 also
compromised the treatment plan component; the treatment plan changes might have been made by an improper
agent. In IUS3, the treatment plan component is likewise compromised; the system architecture included terminals
in open areas that could be accessed by unauthorized users. IUS4 compromised the treatment component as well; the
system architecture emphasized user capabilities, and system backup and recovery had not received equivalent
attention. IUS5 affected all software components, including the reporting engine; although there were implicit user
requirements for availability, they had not been considered in the original system architecture.

Step 4: Survivability analysis

As we noted earlier, softspot components are both essential and compromisable. Our analysis showed that the
reporting engine component and the database treatment plan component can both be compromised in a variety of
ways.

Analysis of the three Rs resulted in the survivability map depicted by Table 1. Development of the table began with
the matching of each intrusion scenario trace, created in Step 3 above, to softspot components. We first checked
each trace to determine if any current resistance components (described in the resistance column of the survivability
map for each scenario) in the architecture could increase the difficulty an intruder would confront in reaching the
softspots referenced in the trace. Because no detailed implementation information was available to identify specific
vulnerabilities in these resistance components, we assumed that implementation vulnerablities would be identified
and corrected later.



 

Table 1. The Sentinel subsystem survivability map.

Intrusion scenario Resistance strategy Recognition strategy Recovery strategy

Current:

Two passwords required for
TP access.

Current:

Logging of changes made to DB.
Provider might recognize an
incorrect TP.

Current:

Built-in recovery in commercial DB.
Backup and recovery scheme defined.

IUS1:

An intruder swaps the
patient Ids of two
validated TPs.

Recommended:

Implement strong
authentication supported in a
security API layer.1

Recommended:

Add cryptographic checksum when
TP is validated.3 Verify
cryptographic checksum when TP
is retrieved.4

Recommended:

Implement a recovery mode in the user
interface to support searching for and
recovering incorrect TPs.1

Current:

Security model for DB field
access.

Current:

None.

Current:

Scrap data and start over, or use a
backup and verify entries.

IUS2:

An intruder uses other
legitimate DB clients
to modify or view TPs
controlled by Sentinel. Recommended:

Verify adequacy of existing
security model with respect to
the integration of future
system components.

Recommended:

Perform a validation on access of a
TP for verification.2 Add
cryptographic checksum when TP
is validated.3 Verify this checksum
when TP is retrieved.4

Recommended:

Scan DB for invalid crypto-checksums
and/or invalid TPs and recover to last
known correct TP.4

Current:

None. No timeout is
specified—anyone can use a
logged-in terminal. Intruder
only has access to logged-in
user’s TPs.

Current:

None, except for the unusual
number of denied accesses to TPs
as an intruder attempts to locate
particular TPs.

Current:

Can get list of modified TPs through the
spoofed user's transaction history.
Manually recover each modified record.

IUS3:

An unauthorized user
employs Sentinel to
modify or view TPs
by spoofing a
legitimate user.

Recommended:

Add a short log-out timeout for
any terminals in uncontrolled
areas.1

Recommended:

Add logging, access control, and
illegal access thresholds to the
security API.1

Recommended:

Develop a recovery procedure and
support it in the application user
interface.1

Current:

Security model in the DB
protects data against
corruption.

Current:

None, except when provider
happens to recognize a corrupted
TP.

Current:

Locate an uncorrupted backup or
reconstruct TPs from scratch.

IUS4:

An intruder corrupts
major portions of the
DB leading to a loss
of trust in validated
TPs. Recommended:

Implement live replicated DB
systems that cross-check for
validity.5

Recommended:

Add and check cryptographic
checksums on records in the DB.3,4

Recommended:

Reduce the backup cycle to quickly
rebuild once a corrupted DB is detected.5



Current:

No procedures defined.

Current:

System does not work.

Current:

Reload the system from backups.

IUS5:

An intruder destroys
or limits access to
Sentinel’s software so
that it cannot retrieve
TPs.

Recommended:

Focus on quick recovery.

Recommended:

None. Easy to detect.

Recommended:

Maintain software archives and define
procedures for fast recovery. Create a
small subsystem that can retrieve TPs
while Sentinel software is down. 6

ID stands for identification, TP for treatment plan, and DB for database. References are to architecture
components.

For the recognition column, we followed a similar process. To assess the effectiveness of current recognition
components, we made a number of assumptions (noted in the survivability map). For example, in IUS3 in Table 1,
we assume that a provider will become suspicious when there are a large number of denied accesses to treatment
plans. If this assumption is not valid, then there are no current recognition strategies associated with this scenario.

For the recovery column, we made assumptions regarding standard practice in distributed database management
facilities—standard backup and recovery of the database and version control of the Sentinel software. Table entries
for current recovery strategies included these assumptions. If they are not satisfied in the final system, the recovery
strategies will be less effective than those described in the survivability map.

Once we identified the current resistance, recognition, and recovery strategies, we analyzed gaps and weaknesses to
locate common points in the architecture where a particular survivability improvement could address multiple
scenarios or strategies. These high-leverage recommendations are listed in a consistent form and identified as a
common recommendation. We also addressed other gaps for which there is no existing strategy in the resistance,
recognition, or recovery columns.

For the resistance column, we made recommendations even where an existing resistance mechanism existed, as this
mechanism can be expected to degrade over time. Ultimately, the system architect must determine the costs and
benefits of implementing these recommendations. The survivability map can help an architect determine the impact
of accepting risks associated with weaknesses in the resistance, recognition, or recovery columns, as these have a
correlation to the intrusion scenarios that can affect the system’s essential services or assets. Table 1 identifies a
number of gaps and assumptions in the current strategies. Of particular interest to an architect are those
recommendations that deal with multiple intrusion scenarios. For example, adding a cryptographic checksum to the
validation of a treatment plan can minimize the risks in several scenarios. A cryptographic checksum could be a
hash function or message digest applied to the fields of the treatment plan to provide an integrity check on the
contents.

Figure 3 illustrates the modified architecture resulting from the survivability map analysis. Many of the
recommendations call for alterations to the same architectural component. To further illustrate the overlaps, the
recommendations are annotated with a reference number (1-6) associated with the modified architecture. This makes
it easy to determine which recommendations would alleviate risks in multiple intrusion scenarios. This view of the
recommendations can help the architect allocate limited resources to high-impact modifications of the architecture.
In modifying the architecture to address the recommendations in the survivability map, several natural locations
emerged where changes could be implemented with minimal impact to the overall system. This beneficial
localization was primarily due to the functional decomposition used in the original architecture. It is also likely that
the scenario evaluations led to recommendations that were natural to the architecture, because their impact on
individual modules was evident.



Figure 3. The Sentinel architecture with survivability modifications (additions and changes shown with
dashed lines and shading).

In addition to using these findings for architectural analysis, Sentinel personnel could also use the findings to make
modifications to system requirements. Step 1 revealed that few specific survivability requirements were specified
other than requiring treatment plan validation, utilization of security features built into the standard login process
and the database, and a development strategy that permits easy modification so that security features could be added.
Changes are thus needed at the highest level to two areas of the requirements; under survivability conditions, there is
a requirement for providers to view treatment plans within a reasonable time, and a requirement to protect the
integrity of the treatment plans in the database.

The SNA method is under continuing development and additional case studies on large-scale network systems are
underway. The method’s success depends on the effectiveness of its recommendations; that is, how well the system
meets the survivability requirements selected by the customer in terms of essential services and assets, given the
extent to which the SNA recommendations are implemented. Of equal importance is whether the customer can
readily incorporate the SNA recommendations into the existing software development process, and thus be able to
adopt the suggested changes. Because the survivability recommendations for Sentinel concentrated on refining an
existing architecture, rather than on requiring a redesign, they satisfied this criterion.

Although most of the recommendations focused on revisions to the application architecture, several called for
changes in design and implementation, or in operations and procedures. The study also raised questions about the
system’s extensibility: Could the proposed architecture support, from a survivability perspective, the functionality
desired in later versions? The SNA process raises questions about all of the design choices that are embodied in a
system architecture. Future studies will explore how to leverage architectural choices to better support survivability,
in the same way that this study leveraged the survivability capabilities of the relational database infrastructure.

The SNA method represents the first word, not the last, on the complex problem of assessing system survivability.
Much work remains to be done, such as developing theory and practice for rigorous system behavior and
architecture definitions, creation of canonical intrusion scenarios that embody current knowledge of attack
strategies, integrating risk analysis and management techniques into the method, and quantifying survivability
metrics and measures of success.
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